National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
PROPAGATION OF LONG FATIGUE CRACKS IN AUSTENITIC STEEL UNDER SHEAR MODES II AND III
Holáň, Libor ; Man, Jiří (referee) ; Polák, Jaroslav (referee) ; Pokluda, Jaroslav (advisor)
This work is focused on the realization of experiment allowing simultaneous loading under mode II and III in a single circular specimen. Proposed experiment allowed to minimize crack closure during the cyclic loading and obtained values of thresholds of stress intensity range can be considered to be very close to effective values. This was attained by means of an unique experimental devices and procedure of preparation of pre-crack of specimen with circumferential notch, which was made of stainless austenitic steel. The obtained values were compared with theoretical models with the support of molecular dynamics and ab-anitio calculation. Based on observation was found out, that fatigue crack propagation is controlled by decohesion model in austenitic steel. The morphology of fracture surfaces was studied by means of optical chromatographie and 3D stereophotogrammetry, which allowed a comparison of created morphology under shear modes II and III. Morphology of fracture surface formed (static and cyclic loading) by pre-crack was also studied by means of selected roughness parameters. The mechanism of deflection (kink) of crack growth under mode II was defined.
PROPAGATION OF LONG FATIGUE CRACKS IN AUSTENITIC STEEL UNDER SHEAR MODES II AND III
Holáň, Libor ; Man, Jiří (referee) ; Polák, Jaroslav (referee) ; Pokluda, Jaroslav (advisor)
This work is focused on the realization of experiment allowing simultaneous loading under mode II and III in a single circular specimen. Proposed experiment allowed to minimize crack closure during the cyclic loading and obtained values of thresholds of stress intensity range can be considered to be very close to effective values. This was attained by means of an unique experimental devices and procedure of preparation of pre-crack of specimen with circumferential notch, which was made of stainless austenitic steel. The obtained values were compared with theoretical models with the support of molecular dynamics and ab-anitio calculation. Based on observation was found out, that fatigue crack propagation is controlled by decohesion model in austenitic steel. The morphology of fracture surfaces was studied by means of optical chromatographie and 3D stereophotogrammetry, which allowed a comparison of created morphology under shear modes II and III. Morphology of fracture surface formed (static and cyclic loading) by pre-crack was also studied by means of selected roughness parameters. The mechanism of deflection (kink) of crack growth under mode II was defined.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.